祝贺沈健同学的工作硅-氧化铪异质集成光子器件中的低功耗压电调谐相关成果近期被Laser & Photonics Reviews期刊接收并作为封面论文发表!

团队博士生沈健同学的工作-- Ultralow-power piezo-optomechanically tuning on CMOS-compatible integrated silicon-hafnium-oxide platform(硅-氧化铪异质集成光子器件中的低功耗压电调谐)相关成果近期被Laser & Photonics Reviews期刊接收发表,该工作得到了国家重点研发计划(2019YFB2203601)、国家自然科学基金(61975115/61835008)的部分资助。作者引入掺杂氧化铪薄膜作为导光层和压电层,开发了CMOS工艺兼容的硅-氧化铪异质集成光子平台,设计并实验演示了基于硅-氧化铪混合波导的压电可调谐微环谐振腔,实现了线性双向的波长调谐,调谐功耗比传统硅热光调谐方案低三个数量级。这扩展了硅光子集成技术的器件库,为CMOS兼容压电驱动器在全集成硅光子芯片中的应用开辟了新途径。

摘要:Power consumption of photonic integrated circuits becomes a critical consideration. We propose a new platform for ultra-low-power tuning in silicon photonics via piezo-optomechanical coupling using hafnium-oxide actuators. As an example of the potential of the platform, we demonstrate a tunable silicon-hafnium-oxide hybrid microring, where hafnium-oxide film acts as an active optical and piezoelectric layer. The hybrid microring is capable of linear bidirectional tuning with a wavelength tuning efficiency of 8.4 pm/V and a power efficiency of 0.12 nW/pm. The estimated power consumption for tuning a free spectral range (FSR) in hybrid microring is 3.07 μW/FSR. Our hybrid silicon-hafnium-oxide technology with complementary metal-oxide-semiconductor (CMOS) compatibility advances the field of ultra-low-power integrated photonic devices and can find applications in optical communications, computing, and spaces under cryogenic temperatures.